Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present 0.6–3.2 pc resolution mid-infrared (MIR) JWST images at 7.7μm (F770W) and 21μm (F2100W) covering the main star-forming regions of two of the closest star-forming low-metallicity dwarf galaxies, NGC 6822 and Wolf–Lundmark–Melotte (WLM). The images of NGC 6822 reveal filaments, edge-brightened bubbles, diffuse emission, and a plethora of point sources. By contrast, most of the MIR emission in WLM is pointlike, with a small amount of extended emission. Compared to solar-metallicity galaxies, the ratio of 7.7μm intensity ( ), tracing polycyclic aromatic hydrocarbons (PAHs), to 21μm intensity ( ), tracing small, warm dust grain emission, is suppressed in these low-metallicity dwarfs. Using Atacama Large Millimeter/submillimeter Array CO(2–1) observations, we find that detected CO intensity versus at ≈2 pc resolution in dwarfs follows a similar relationship to that at solar metallicity and lower resolution, while the CO versus relationship in dwarfs lies significantly below that derived from solar-metallicity galaxies at lower resolution, suggesting more pronounced destruction of CO molecules at low metallicity. Finally, adding in Local Group L-Band Survey 21 cm Hiobservations from the Very Large Array, we find that and versus total gas ratios are suppressed in NGC 6822 and WLM compared to solar-metallicity galaxies. In agreement with dust models, the level of suppression appears to be at least partly accounted for by the reduced galaxy-averaged dust-to-gas and PAH-to-dust mass ratios in the dwarfs. Remaining differences are likely due to spatial variations in dust model parameters, which should be an exciting direction for future work in local dwarf galaxies.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract We present the Local GroupL-Band Survey, a Karl G. Jansky Very Large Array (VLA) survey producing the highest-quality 21 cm and 1–2 GHz radio continuum images to date, for the six VLA-accessible, star-forming, Local Group galaxies. Leveraging the VLA’s spectral multiplexing power, we simultaneously survey the 21 cm line at high 0.4 km s−1velocity resolution, the 1–2 GHz polarized continuum, and four OH lines. For the massive spiral M31, the dwarf spiral M33, and the dwarf irregular galaxies NGC 6822, IC 10, IC 1613, and the Wolf–Lundmark–Melotte Galaxy, we use all four VLA configurations and the Green Bank Telescope to reach angular resolutions of <5″ (10–20 pc) for the 21 cm line with <1020cm−2column density sensitivity, and even sharper views (<2″; 5–10 pc) of the continuum. Targeting these nearby galaxies (D ≲ 1 Mpc) reveals a sharp, resolved view of the atomic gas, including 21 cm absorption, and continuum emission from supernova remnants and Hiiregions. These data sets can be used to test theories of the abundance and formation of cold clouds, the driving and dissipation of interstellar turbulence, and the impact of feedback from massive stars and supernovae. Here, we describe the survey design and execution, scientific motivation, data processing, and quality assurance. We provide a first look at and publicly release the wide-field 21 cm Hidata products for M31, M33, and four dwarf irregular targets in the survey, which represent some of the highest-physical-resolution 21 cm observations of any external galaxies beyond the LMC and SMC.more » « lessFree, publicly-accessible full text available July 17, 2026
- 
            ABSTRACT In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure.more » « less
- 
            Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insight into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2 Z⊙) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local Group L-Band Survey (LGLBS) enabled these detections due to its high spatial (15 pc for Hi emission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline to search for Hi absorption at high angular resolution and extract associated Hi emission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32±6 K, a mean CNM column density of 3.1×1020 cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking non-detections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hi absorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hi emission. We also analyze a nearby sightline with deep, narrow Hi self-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hα emissions suggests a close link between the colder, denser Hi phase and star formation in NGC 6822.more » « less
- 
            Abstract Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2Z⊙) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL-band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hiemission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hiabsorption at high angular resolution and extracting associated Hiemission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hiabsorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hiemission. We also analyze a nearby sightline with deep, narrow Hiself-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hαemissions suggests a close link between the colder, denser Hiphase and star formation in NGC 6822.more » « less
- 
            Abstract We present a12CO(J= 2−1) survey of 60 local galaxies using data from the Atacama Compact Array as part of the Extragalactic Database for Galaxy Evolution: the ACA EDGE survey. These galaxies all have integral field spectroscopy from the CALIFA survey. Compared to other local galaxy surveys, ACA EDGE is designed to mitigate selection effects based on CO brightness and morphological type. Of the 60 galaxies in ACA EDGE, 36 are on the star formation main sequence, 13 are on the red sequence, and 11 lie in the “green valley” transition between these sequences. We test how star formation quenching processes affect the star formation rate (SFR) per unit molecular gas mass, SFEmol= SFR/Mmol, and related quantities in galaxies with stellar masses 10 ≤ log[M⋆/M⊙] ≤ 11.5 covering the full range of morphological types. We observe a systematic decrease of the molecular-to-stellar mass fraction ( ) with a decreasing level of star formation activity, with green valley galaxies also having lower SFEmolthan galaxies on the main sequence. On average, we find that the spatially resolved SFEmolwithin the bulge region of green valley galaxies is lower than in the bulges of main-sequence galaxies if we adopt a constant CO-to-H2conversion factor,αCO. While efficiencies in main-sequence galaxies remain almost constant with galactocentric radius, in green valley galaxies, we note a systematic increase of SFEmol, , and specific SFR with increasing radius. As shown in previous studies, our results suggest that although gas depletion (or removal) seems to be the most important driver of the star formation quenching in galaxies transiting through the green valley, a reduction in star formation efficiency is also required during this stage.more » « less
- 
            Abstract We present a near-infrared (NIR) candidate star cluster catalog for the central kiloparsec of M82 based on new JWST NIRCam images. We identify star cluster candidates using the F250M filter, finding 1357 star cluster candidates with stellar masses >104M⊙. Compared to previous optical catalogs, nearly all (87%) of the candidates we identify are new. The star cluster candidates have a median intrinsic cluster radius of ≈1 pc and stellar masses up to 106M⊙. By comparing the color–color diagram to dust-freeyggdrasilstellar population models, we estimate that the star cluster candidates haveAV∼ 3−24 mag, corresponding toA2.5μm∼ 0.3−2.1 mag. There is still appreciable dust extinction toward these clusters into the NIR. We measure the stellar masses of the star cluster candidates, assuming ages of 0 and 8 Myr. The slope of the resulting cluster mass function isβ= 1.9 ± 0.2, in excellent agreement with studies of star clusters in other galaxies.more » « less
- 
            Abstract The EDGE-CALIFA survey provides spatially resolved optical integral-field unit and CO spectroscopy for 125 galaxies selected from the Calar Alto Legacy Integral Field Area Survey (CALIFA) Data Release 3 sample. The Extragalactic Database for Galaxy Evolution (EDGE) presents the spatially resolved products of the survey as pixel tables that reduce the oversampling in the original images and facilitate comparison of pixels from different images. By joining these pixel tables to lower-dimensional tables that provide radial profiles, integrated spectra, or global properties, it is possible to investigate the dependence of local conditions on large-scale properties. The database is freely accessible and has been utilized in several publications. We illustrate the use of this database and highlight the effects of CO upper limits on the inferred slopes of the local scaling relations between the stellar mass, star formation rate (SFR), and H2surface densities. We find that the correlation between H2and SFR surface density is the tightest among the three relations.more » « less
- 
            Shocks and torques produced by non-axisymmetric structures such as spiral arms and bars may transport gas to galaxy central regions. We test this hypothesis by studying the dependence of the concentration of CO luminosity ( C CO ) and molecular gas ( C mol ) and the star formation rate ( C SFR ) in the central ∼2 kpc on the strength of non-axisymmetric disk structure using a sample of 57 disk galaxies selected from the EDGE-CALIFA survey. The C mol is calculated using a CO-to-H 2 conversion factor that decreases with higher metallicity and higher stellar surface density. We find that C mol is systematically 0.22 dex lower than C CO . We confirm that high C mol and strong non-axisymmetric disk structure are more common in barred galaxies than in unbarred galaxies. However, we find that spiral arms also increase C mol . We show that there is a good correlation between C mol and the strength of non-axisymmetric structure (which can be due to a bar, spiral arms, or both). This suggests that the stronger the bars and spirals, the more efficient the galaxy is at transporting cold gas to its center. Despite the small subsample size, the C mol of the four Seyferts are not significantly reduced compared to inactive galaxies of similar disk structure, implying that the active galactic nucleus feedback in Seyferts may not notably affect the molecular gas distribution in the central ∼2 kpc. We find that C SFR tightly correlates with C mol in both unbarred and barred galaxies. Likewise, elevated C SFR is found in galaxies with strong disk structure. Our results suggest that the disk structure, either spirals or bars, can transport gas to the central regions, with higher inflow rates corresponding to stronger structure, and consequently boost central star formation. Both spirals and bars play, therefore, an essential role in the secular evolution of disk galaxies.more » « less
- 
            Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available